Skip to main content
Integrate ELIZAOS agents with your existing business systems, development workflows, and data sources for seamless AI automation.

Integration Overview

ELIZAOS agents can be integrated with virtually any system through:

API Integrations

Connect agents to REST APIs, GraphQL endpoints, and webhook systems.

Database Connections

Direct integration with SQL and NoSQL databases for data processing.

Message Queues

Integrate with RabbitMQ, Apache Kafka, and other messaging systems.

Workflow Orchestration

Connect with existing workflow engines and business process automation.

Common Integration Patterns

CI/CD Pipeline Integration

1

Code Review Agent

Deploy an agent that automatically reviews code changes in your CI/CD pipeline.
# GitHub Actions integration
name: ELIZAOS Code Review
on:
  pull_request:
    types: [opened, synchronize]

jobs:
  ai-review:
    runs-on: ubuntu-latest
    steps:
      - name: Trigger ELIZAOS Review
        run: |
          curl -X POST "https://your-elizaos.com/api/agents/code-reviewer/trigger" \
            -H "Authorization: Bearer ${{ secrets.ELIZAOS_API_KEY }}" \
            -d '{
              "repository": "${{ github.repository }}",
              "pull_request": ${{ github.event.number }},
              "files_changed": ${{ github.event.pull_request.changed_files }}
            }'
2

Test Generation Agent

Automatically generate test cases for new code changes.
{
  "name": "test-generator",
  "triggers": [
    {
      "type": "webhook",
      "source": "github",
      "event": "push",
      "filter": "src/**/*.py"
    }
  ],
  "actions": [
    {
      "type": "analyze_code",
      "generate_tests": true,
      "coverage_target": 80
    }
  ]
}
3

Documentation Agent

Keep documentation up-to-date with code changes.
# Agent configuration for doc updates
doc_agent = {
    "name": "doc-updater",
    "model": "hermes4:70b",
    "specialization": "documentation",
    "triggers": [
        {
            "type": "code_change",
            "patterns": ["*.py", "*.js", "*.ts"],
            "action": "update_documentation"
        }
    ],
    "integrations": [
        "github_repo",
        "confluence_wiki",
        "notion_docs"
    ]
}

Customer Support Automation

Intelligent support ticket classification and routing
{
  "name": "ticket-router",
  "model": "hermes4:70b",
  "specialization": "customer_support",
  "integrations": [
    {
      "type": "zendesk",
      "config": {
        "subdomain": "yourcompany",
        "email": "[email protected]",
        "token_env": "ZENDESK_TOKEN"
      }
    }
  ],
  "rules": [
    {
      "condition": "contains_code",
      "action": "route_to_technical_team",
      "priority": "high"
    },
    {
      "condition": "billing_related",
      "action": "route_to_billing_team",
      "auto_respond": true
    }
  ]
}
Capabilities:
  • Automatic ticket classification
  • Priority assignment based on content
  • Intelligent routing to appropriate teams
  • Auto-responses for common issues
Dynamic knowledge base managementFeatures:
  • Automatic FAQ generation from tickets
  • Knowledge article updates based on resolutions
  • Search and recommendation improvements
  • Multi-language support
Integration Example:
knowledge_agent = {
    "name": "kb-manager",
    "model": "kimi-k2",
    "data_sources": [
        "support_tickets",
        "product_documentation", 
        "community_forums"
    ],
    "capabilities": [
        "extract_solutions",
        "generate_faqs",
        "update_articles",
        "recommend_content"
    ]
}

Business Process Automation

Automated data processing and analysis
{
  "name": "data-pipeline",
  "type": "workflow_agent",
  "steps": [
    {
      "name": "data_ingestion",
      "agent": "data-collector",
      "sources": ["api_endpoints", "file_uploads", "database_changes"]
    },
    {
      "name": "data_validation",
      "agent": "data-validator", 
      "rules": ["schema_validation", "quality_checks", "anomaly_detection"]
    },
    {
      "name": "data_analysis",
      "agent": "data-analyzer",
      "models": ["statistical_analysis", "trend_detection", "forecasting"]
    },
    {
      "name": "report_generation",
      "agent": "report-generator",
      "outputs": ["dashboard_updates", "email_reports", "slack_notifications"]
    }
  ]
}
Automated content review and moderationAgent Configuration:
{
  "name": "content-moderator",
  "model": "hermes4:405b",
  "specialization": "content_moderation",
  "rules": [
    {
      "type": "toxicity_detection",
      "threshold": 0.8,
      "action": "flag_for_review"
    },
    {
      "type": "spam_detection", 
      "action": "auto_remove"
    },
    {
      "type": "inappropriate_content",
      "action": "blur_and_flag"
    }
  ],
  "integrations": ["user_database", "moderation_queue", "notification_system"]
}
Automated financial data processing and reportingCapabilities:
  • Transaction analysis and categorization
  • Fraud detection and alerting
  • Financial report generation
  • Budget tracking and forecasting
  • Compliance monitoring
Example Agent:
financial_agent = {
    "name": "financial-analyzer",
    "model": "hermes4:405b",
    "data_sources": [
        "accounting_system",
        "bank_apis",
        "expense_reports",
        "invoice_system"
    ],
    "capabilities": [
        "transaction_categorization",
        "anomaly_detection",
        "report_generation",
        "compliance_checking"
    ],
    "security": {
        "encryption_required": True,
        "audit_logging": True,
        "access_controls": "strict"
    }
}

Enterprise Integrations

ERP System Integration

Connect with SAP ERP systems
{
  "name": "sap-integration",
  "type": "erp_agent",
  "config": {
    "sap_system": {
      "host": "sap.company.com",
      "client": "100",
      "user": "AI_USER",
      "password_env": "SAP_PASSWORD"
    },
    "modules": [
      "FI", "CO", "MM", "SD", "HR"
    ],
    "permissions": {
      "read_only": true,
      "allowed_tables": ["VBAK", "VBAP", "KNA1", "MARA"]
    }
  }
}
CRM data analysis and automationCapabilities:
  • Lead scoring and qualification
  • Opportunity analysis and forecasting
  • Customer data enrichment
  • Automated follow-up sequences
Setup:
{
  "name": "salesforce-agent",
  "integrations": [
    {
      "type": "salesforce",
      "config": {
        "instance_url": "https://yourcompany.salesforce.com",
        "client_id": "your-connected-app-id",
        "client_secret_env": "SF_CLIENT_SECRET",
        "username": "[email protected]",
        "password_env": "SF_PASSWORD"
      }
    }
  ]
}

Monitoring and Observability

Prometheus Integration

Metrics collection and monitoring
  • Agent performance metrics
  • Resource utilization tracking
  • Custom business metrics
  • Alert manager integration

Grafana Dashboards

Visualization and alerting
  • Real-time agent performance dashboards
  • Resource usage visualization
  • Cost tracking and optimization
  • Custom alert configurations

Log Aggregation

Centralized logging with ELK stack
  • Elasticsearch for log storage
  • Logstash for log processing
  • Kibana for log visualization
  • Custom log analysis agents

Distributed Tracing

End-to-end request tracing
  • Jaeger or Zipkin integration
  • Agent interaction tracing
  • Performance bottleneck identification
  • Service dependency mapping

Webhook and Event Integration

Webhook Configuration

{
  "webhooks": {
    "github_events": {
      "url": "/webhooks/github",
      "secret_env": "GITHUB_WEBHOOK_SECRET",
      "events": ["push", "pull_request", "issues"],
      "agent_triggers": [
        {
          "event": "push",
          "agent": "code-analyzer",
          "action": "analyze_changes"
        }
      ]
    },
    "slack_events": {
      "url": "/webhooks/slack",
      "verification_token_env": "SLACK_VERIFICATION_TOKEN",
      "events": ["message", "file_shared"],
      "agent_triggers": [
        {
          "event": "message",
          "condition": "contains(@ai)",
          "agent": "slack-assistant"
        }
      ]
    }
  }
}

Event-Driven Architecture

Systems that can trigger agent actions
  • File system changes (new files, modifications)
  • Database changes (inserts, updates, deletes)
  • API calls and webhook events
  • Time-based triggers (cron-like scheduling)
  • User interactions and manual triggers

Best Practices

Agent Design Patterns

Design agents with focused, specific purposesGood: Separate agents for code review, testing, and documentation ❌ Avoid: One agent trying to handle all development tasksBenefits:
  • Easier debugging and maintenance
  • Better resource utilization
  • Improved fault isolation
  • Simpler scaling decisions
Design agents to be stateless when possibleGood: Store state in external databases or shared storage ❌ Avoid: Relying on agent memory for critical dataImplementation:
# Stateless agent design
def process_request(request_data):
    # Load context from external source
    context = load_context(request_data.user_id)
    
    # Process with loaded context
    result = process_with_context(request_data, context)
    
    # Save updated context externally
    save_context(request_data.user_id, result.context)
    
    return result.output
Robust error handling and recovery
  • Implement retry logic with exponential backoff
  • Use circuit breakers for external service calls
  • Provide meaningful error messages and logging
  • Design graceful degradation for partial failures
# Error handling example
@retry(max_attempts=3, backoff=exponential_backoff)
def call_external_api(data):
    try:
        response = requests.post(api_url, json=data, timeout=30)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.Timeout:
        logger.error("API call timed out")
        return {"error": "timeout", "retry": True}
    except requests.exceptions.RequestException as e:
        logger.error(f"API call failed: {e}")
        return {"error": "api_failure", "retry": False}

Performance Optimization

Resource Efficiency

Optimize agent resource usage
  • Use appropriate model sizes for tasks
  • Implement connection pooling
  • Cache frequently accessed data
  • Batch similar operations together

Scaling Strategy

Plan for growth and load increases
  • Design agents for horizontal scaling
  • Use load balancing across agent instances
  • Implement auto-scaling based on metrics
  • Plan resource allocation strategies

Monitoring

Comprehensive agent monitoring
  • Track agent performance metrics
  • Monitor resource utilization
  • Set up alerting for failures
  • Analyze usage patterns for optimization

Cost Management

Optimize costs while maintaining performance
  • Use appropriate GPU instances for workloads
  • Implement auto-shutdown for idle agents
  • Monitor and optimize token usage
  • Use spot instances when appropriate

Advanced Integration Scenarios

Multi-Agent Workflows

# Multi-agent research workflow
research_pipeline = {
    "name": "research-pipeline",
    "agents": [
        {
            "name": "paper-finder",
            "model": "hermes4:70b",
            "role": "find_relevant_papers",
            "tools": ["arxiv_search", "pubmed_search", "google_scholar"]
        },
        {
            "name": "paper-analyzer",
            "model": "hermes4:405b",
            "role": "analyze_papers",
            "tools": ["pdf_reader", "citation_extractor", "summary_generator"]
        },
        {
            "name": "insight-synthesizer",
            "model": "hermes4:405b", 
            "role": "synthesize_insights",
            "tools": ["trend_analyzer", "gap_identifier", "recommendation_engine"]
        },
        {
            "name": "report-writer",
            "model": "kimi-k2",
            "role": "generate_report",
            "tools": ["markdown_generator", "chart_creator", "reference_formatter"]
        }
    ],
    "workflow": [
        {
            "step": 1,
            "agent": "paper-finder",
            "input": "research_topic",
            "output": "relevant_papers"
        },
        {
            "step": 2,
            "agent": "paper-analyzer",
            "input": "relevant_papers",
            "output": "paper_analysis",
            "parallel": True
        },
        {
            "step": 3,
            "agent": "insight-synthesizer",
            "input": "paper_analysis",
            "output": "research_insights"
        },
        {
            "step": 4,
            "agent": "report-writer",
            "input": "research_insights",
            "output": "final_report"
        }
    ]
}

Real-time System Integration

Manage and respond to IoT device data
iot_agent = {
    "name": "iot-manager",
    "model": "hermes4:70b",
    "data_streams": [
        {
            "type": "mqtt",
            "broker": "iot.company.com",
            "topics": ["sensors/+/temperature", "devices/+/status"]
        }
    ],
    "actions": [
        {
            "trigger": "temperature > 75",
            "action": "send_alert",
            "targets": ["facilities_team", "hvac_system"]
        },
        {
            "trigger": "device_offline",
            "action": "diagnose_and_repair",
            "escalate_after": "5 minutes"
        }
    ]
}

Testing and Validation

Agent Testing Framework

1

Unit Testing

Test individual agent functions
import unittest
from elizaos.testing import AgentTestCase

class TestDocumentAnalyzer(AgentTestCase):
    def setUp(self):
        self.agent = self.create_test_agent("document-analyzer")
    
    def test_pdf_analysis(self):
        result = self.agent.process({
            "type": "pdf",
            "content": "test_document.pdf"
        })
        self.assertIn("summary", result)
        self.assertGreater(len(result["summary"]), 50)
2

Integration Testing

Test agent interactions with external systems
def test_github_integration():
    # Test GitHub API integration
    agent = create_agent("github-reviewer")
    
    # Mock GitHub API responses
    with mock_github_api():
        result = agent.review_pr("owner/repo", 123)
        assert result["status"] == "completed"
        assert "feedback" in result
3

Load Testing

Test agent performance under load
# Load test agent endpoints
elizaos test load \
  --agent document-analyzer \
  --concurrent-requests 100 \
  --duration 300s \
  --ramp-up 30s

Security Considerations

Agent Security

Isolate agent execution environments
  • Process isolation using containers
  • Network namespace separation
  • File system access restrictions
  • Resource quota enforcement
Fine-grained access controls
{
  "agent_permissions": {
    "data_access": {
      "allowed_databases": ["analytics"],
      "allowed_tables": ["users", "events"],
      "operations": ["SELECT"],
      "row_limit": 10000
    },
    "api_access": {
      "allowed_endpoints": ["/api/users", "/api/reports"],
      "rate_limit": "100/hour",
      "authentication_required": true
    }
  }
}
Comprehensive logging and compliance
  • All agent actions logged with timestamps
  • Data access tracking and reporting
  • Compliance with GDPR, HIPAA, SOX
  • Automated compliance reporting

Next Steps